
JournalofGlobal Optimization 6: 153-161, 1995. 153 
@ 1995 KluwerAcademic Publishers. Printed in the Netherlands. 

The Linear Complementarity Problem as a Separable 
Bilinear Program* 

O.L. M A N G A S A R I A N  
Computer Sciences Department, University of Wisconsin, 1210 West Dayton Street, Madison, WI 
53706, U.S.A. (email: olvi@cs.wisc.edu) 

(Received: 29 July 1994; accepted: 4 October 1994) 

Abstract. The nonmonotone linear complementarity problem (LCP) is formulated as a bilinear 
program with separable constraints and an objective function that minimizes a natural error residual 
for the LCP. A linear-programming-based algorithm applied to the bilinear program terminates in a 
finite number of steps at a solution or stationary point of the problem. The bilinear algorithm solved 
80 consecutive cases of the LCP formulation of the knapsack feasibility problem ranging in size 
between 10 and 3000, with almost constant average number of major iterations equal to four. 
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1. Introduction 

It is well known that the linear complementari ty problem [4, 16] 

0 <~ xJ_Mx § q >1 0 (1) 

for  a given n x n real matrix M and a given n x 1 vector q, can be written as the 
bilinear program 

min{x 'w lw  = M x  + q, x >i O, w >1 0}. (2) ~,~ 

For  the case of  a general M ,  considered here, the objective function of  (2) is 
nonconvex  and the constraints are inseparable in the variables x and w. Thus for a 
general M ,  the bilinear program (2) with inseparable constraints is not suitable for 
solving the LCP. An interesting and somewhat curious exception is the monotone 
case when M is positive semidefinite. For this case x~w is a convex function in 
(x,  w)  on the feasible region of  (2) [11, Proposition 1], and an effective bilinear 
algorithm can be prescribed [ 11, Section 4]. When M is positive definite, an exterior 
penalty function proposed [5] for (2) on {(x,  w)lx  >>, 0, w >/0} is strongly convex 
in (x, w) for  sufficiently large values of  the penalty parameter. This also leads to 
an alternative computational approach for this case. 

Recently there have been successful attempts for solving bilinear programs with 
separable constraints. In [1], separable bilinear programs were formulated for the 
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NP-complete bilinear separability problem, where 140 consecutive instances of 
the problem were solved. In [19] another NP-complete robotic problem is cast and 
solved as a separable bilinear program. Other bilinear techniques are given in [7, 
Chapter 9] and references cited therein. In this work we cast the NP-complete [2] 
general LCP as the following separable bilinear program. 

min{(r '  + s ' M ) x  + q ' s l M x  + q >1 O, x >>. O, r + s = e, r, s >1 0}. (3) ~,~,~ 

We note that the obj ective function is bilinear in x and ( r, s) and that the constraints 
are separable in the variables x and (r, s). Hence, simple finitely terminating 
methods of bilinear programming, such as those of [1], are applicable for obtaining 
either an exact solution of (3) or a stationary point. Of course, we do not expect 
this bilinear formulation to be capable of  processing every LCP, but it is interesting 
to note that it can indeed solve nonmonotone LCP's. For example, this bilinear 
scheme solved 80 consecutive nonmonotone LCP's associated with the knapsack 
feasibility problem [3, 2] without failure and with as many as 3000 variables. 

We briefly outline the paper now. In Section 2 we establish equivalence of 
two formulations, (3) and (5), to the general LCP (1). We give a simple bilinear 
algorithm, Algorithm 2.3, based on (5) and establish its fmite termination to a 
solution of the LCP or to a stationary point in Theorem 2.4. In Remark 2.6 we 
note that the objective function of the bilinear program (3), when minimized with 
respect to the (r,  s) variables, yields the objective function of (5), which turns out 
to be a classical natural concave error residual of the LCP [18, 8, 12]. In Section 
3 we report on numerical testing of the Bilinear Algorithm 2.3. We tested it on 
the NP-complete nonmonotone LCP formulation of  knapsack feasibility problems 
of size 10 to 3000. For each problem size, ten instances were solved. A total of  
eighty consecutive problems were solved without failure. Average major iteration 
number did not grow with problem size, but stayed near a constant mean of 4 
iterations. Total solution time appears to grow polynomially in problem size rather 
than exponentially, as indicated by a leveling off of  the concave-looking log-time 
versus size plot depicted in Figure 2. Section 4 ends the paper with some conclusions 
and open questions. 

A word about our notation. The feasible region of the LCP (1) is the set { x I M x + 
q /> 0, x >/ 0}. The scalar product of two vectors x and y in the n-dimensional 
real space will be denoted by x 'y  in conformity with MATLAB [14] notation. For 
a linear program m i n x e x  c'x with a vertex solution, the notation 

arg vertex partial min cl :c 
sEX  

will denote any vertex of the feasible region X,  typically obtained by any desired 
number of  steps of the simplex method. For x E R ~, the norm Ilzll win denote 
the 2-norm, ( x ' x )  1/2 w ~ e  llxlll wm denote the 1-norm, ~i~=l lx~l. The notation 
min{x, y} applied to vectors x and y in/2 '~ will denote a vector with components 
that are minima of  corresponding components of  x and y. For x E R n, (x +)i =- 
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max{O, x i } , i  = 1 , . . . , n .  For an m • n matrix A, Ai will denote the ith row of 
A. The step function, step(x), applied to x E R n is defined as a binary vector in 
R n of zeros and ones, with ones corresponding to positive components of  x. The 
identity matrix in a real space of arbitrary dimension will be denoted by I ,  while a 
column vector of ones of arbitrary dimension will be denoted by e. 

2. Separable Bilinear Formulation of the LCP 

We begin by establishing the validity of the bilinear program (3) as an equivalent 
formulation of the general LCP. 

PROPOSITION 2.1. The point x in R ~ solves the LCP (1) if and only if  x and 
some r, s in R ~ solve the bilinear program (3) with a zero minimum. 

Proof Necessity. Let x solve the LCP (1). Define r and s as follows: 

1 for Mix  + qi > O 
( 1 - s i ) = r i =  1 for x i = 0 ,  M i x + q i = 0  

0 .for xi > 0 

It immediately follows, that x, r, s satisfy the constraints of (3) and render zero its 
objective which is nonnegative on the feasible region. 

Sufficiency. Let x, r, x solve (3) with a zero minimum. Then 0 = r~x + s~(Mx + 
q). Since r + s = e > 0, it follows that x l ( M x  + q) = O, and x solves the LCP 
(1). [] 

We note that Proposition 2.1 also follows from [ 10, Theorem 1 ]. We further note 
that, for a fixed x satisfying the constraints of (3), the objective of (3) is minimized 
over r, s/> 0, r + s = e, by taking 

s = s(x)  = s t e p ( ( I -  M ) x  - q), r = r(x) = e - s(x). (4) 

This leads to the following alternative characterization of an LCP solution as a 
consequence of Proposition 2.1. 

PROPOSITION 2.2. The point x in R ~ solves the LCP (1) i f  and only i f  

min{(e + ( M ' -  I ) s (x ) ) ' x  + q 's(x)]Mx + q >10,x >>. O) = O, 

where s(x)  is defined in (4). 

(5) 

We note immediately that, in the objective function of (5), the minimization over 
r and s prescribed in (3) has been carried out and hence the bilinear algorithm [1, 
Algorithm 2.1 ] simplifies to the following, where the minimization over r and s 
has been carried out as indicated by (4). 
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ALGORITHM 2.3. Bilinear Algorithm. Start with any feasible x~ for (5). Determine 
x i+l from x i such that 

x i+1 E arg vertex partial rn~s + (M'  - _r)8(x/))'xlMx + q/> O, x >/O) 

(6) 

where 8(x) is defined in (4) and such that 

(e + ( M ' -  I)s(xi)) ' (x  i+1 - x i) < O. 

Finite termination of the Bilinear Algorithm 2.3 follows directly from [ l, Theorem 
2.1] as shown below. 

THEOREM 2.4. For a feasible LCP (1), the sequence {x i} of the Bilinear Algo- 
rithm 2.3 is well defined and terminates at a solution of the LCP or at a stationary 
point ~ satisfying the following necessary optimality conditions of (5)for 2 and 
some ~t E Rn : 

M~ + q >/O, ~ >/O, - M ' ~  + (M' - I)8(~) + e >/O, y >/0 

~I'(M2 + q) + 2 ' ( - M ' y  + (M'  - 1)8(2) + e) = O, (7) 

where 8(2) is defined in (4). The stationary point 2 solves the LCP (1) if and only 
if~l = s(~). 

Proof. The first part of the theorem is a direct consequence of [1, Theorem 
2.1] where the minimization over (r, s) in (3) has been carried out resulting in 
the objective of (5) that does not depend on (r, s). To obtain the last part of the 
theorem, note that the conditions (7) are satisfied by ~ = 8(2), when ~, is feasible 
for the LCP (7) and that 

8(~)'(M~ + q) + x ' ( - 4 ~ )  + ~) = o. 

Since 8(:~) + ( - 8 ( 2 )  + e) = e > O, it follows that 2 ' (M2  + q) = O, and ~" solves 
the LCP (1). [] 

REMARK 2.5. The objective function of (5) is a concave function of x. This follows 
from that fact that it is obtained by minimizing the objective (r ~ + 8~M)x + q~s 
of (3) over r, s ) 0, r + s = e, and the latter objective is linear in r and 8 [9, 
Theorem 1]. This, of course, makes problem (5) a difficult concave minimization 
problem. 

REMARK 2.6. By using the definitions (4) of 8(x) and r(x) in the objective 
function of (5), the latter problem can be rewritten as 

m i n {  ~ xi + ~ Mix + qi,Mx + q >~ O,x >~ O} . (8) 
Mix+qi>.xl Mix+qi<xi 
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This problem can be rewritten as 

rn~n{t ] min{x ,Mx + q)]]l]Mx + q/> 0, x/> 0}. (9) 

The objective function of (9) is a classical natural residual of the linear comple- 
mentarity problem [18, 8, 12] and constitutes a local error bound for any LCP, 
and a global error bound for strongly monotone M. It is also a global error 
bound for M E R0, the class of matrices M such that 0 is the only solution 
to Mx/> 0, x/> 0, J M x  = 0. Hence, the objective of (8) or (9) bounds a constant 
multiple of the distance to the solution set of the LCP for these cases. We note 
again that the objective function of (9) is concave in x because it is the sum of n 
terms, each of which is the minimum of two linear functions. 

We give now some computational results. 

3. Computational Results 

Numerical testing of the Bilinear Algorithm 2.3 was carried out with MATLAB [ 14] 
on a DECstation 5000/125 using MINOS 5.4 [15]. Since there is no guarantee that 
the algorithm will terminate at a global solution, random restarts (major iterations) 
in the (r, s) space were carried out. Each restart consisted of taking r(x ~ as a 
random vertex of the unit cube {rl0 ~< r ~< e} and s(x ~ = e - r(x~ For a sparse 
nonmonotone LCP test problem, we chose the LCP formulation of the knapsack 
feasibility problem, also known as the subset sum problem [13]. The problem 
consists of finding an n-dimensional binary vector z such that 

a'z = b, (I0) 

where a is a given n • 1 vector of positive integers, and b is a positive integer. The 
equivalent LCP [3] is given by 

M = e t - n  , q = - b  . 
- d  0 - n  b 

(l l)  

We note that this formulation is slightly different from that of [2] wherein - n  
of (11) is replaced by -1 .  The formulation (11), unlike that of [2] where M is 
indefinite, ensures that M is negative definite, However the two formulations are 
essentially the same and are related by a simple change of variable of the compo- 
nents X~+l and x~+2. An interesting symmetric LCP formulation of the knapsack 
feasibility problem is given in [6]. The knapsack solution z is obtained from the 
LCP solution x E R ~+2 by the relation 

Xi 
z i = - - ,  i =  1 , . . . , n .  (12) 

ai 

The matrix M of (11) is negative definite, as can be easily deduced by the Gersgorin 
Circle Theorem [17, Theorem 3.2.1] applied to (M + M') /2  and the fact that 
(M + MI)/2 is nonsingular. 
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TABLE I. Summary of results for 80 problems 

n # restarts # lp's time sec. 
(last restart) per problem 

nun 10 
m e a n  

m a x  

n u n  

m e a n  

m a x  

n u n  

m e a n  

m a x  

r n l n  

m e a n  

m a x  

m a n  

m e a n  

m a x  

n u n  

m e a n  

m a x  

n u n  

m e a n  

m a x  

m m  

m e a n  

m a x  

100 

500 

1000 

1500 

2000 

2500 

3000 

1 1 0.1 
4.4 1.1 0.5 

15 2 1.7 

1 1 0.4 
5.7 1.2 3.4 

15 2 7.4 

1 1 6.7 
3.8 1.6 40.4 
8 3 69.0 

1 1 12.3 
3.2 1.3 146.0 
7 2 378.0 

1 1 22.0 
2.4 1.1 247.7 
6 2 953.4 

1 1 19.2 
4.4 1.3 706.6 

15 2 2971.2 

1 1 80.7 
2.8 1.5 711.8 
8 3 1564.3 

1 1 145.5 
3.9 1.7 1252.6 

10 2 3161.8 

Eighty consecutive knapsack feasibility problems (10) were solved by the B ilin- 

ear Algor i thm 2.3 with 10 < n < 3000. The vector a had random integer com- 
ponents  uniformly distributed in [0, 10]. A random binary vector  x in R n was 
generated and b was determined f rom b = a~x. Ten problems for each of  n = 10, 
100, 500, 1000, 1500, 2000, 2500 and 3000 were solved. The results are summa-  
rized in Table I. For each n, the min imum,  mean and max imum,  over  10 problems,  
o f  the fol lowing quantities are given: the number  of  restarts (major  iterations), 
number  of  linear programs solved after the last restart and total time. M a x i m u m  
number  of  restarts permit ted was 30 (actual m a x i m u m  number  of  restarts needed 
was 15) and m a x i m u m  number  of  linear programs per restart permit ted was 8 
(actual m a x i m u m  number  of  linear programs needed in each last restart was 3). It 
is interesting to note that the number  of  restarts does not grow with prob lem size, 
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and in fact it decreases sometimes. For example, the maximum of the mean number 
of restarts is 5.7 for n=100 while the same mean is 3.9 for n--3000. The number 
of linear programs solved per last restart is fairly small, never more than 3 and 
average less than 2. Finally, the time to solve each problem is given both in Table I 
and Figures 1 and 2. Figure 1 plots time versus problem size n while Figure 2 plots 
logarithm of time to the base e versus problem size n. Both figures, and especially 
Figure 2, indicate a leveling off of the time versus problem size. The leveling off 
of the log plot may be indicative of polynomial time growth with problem size. 

4. Conclusion 

We have presented a separable bilinear programming approach for solving the 
nonmonotone LCE Computational results on a class of nonmonotone LCP's are 
encouraging and warrant further study of the approach. Interesting open questions 
are: What  classes of LCP's is the bilinear approach best suited for? What modifi- 
cations are needed to further speed the bilinear approach and make it applicable 
for wider classes of LCP's? For what LCP's are the stationarity conditions (7) 
sufficient for solvability of the LCP? 
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